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Abstract

We seek error models for simulations that model chaotic flow. Stable statistics for the solution and for the error are
obtained after suitable averaging procedures.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Uncertainty quantification is at its essence a study of errors, both their description and their conse-
quences. Addressed here are the errors arising from the finite resolution numerical discretizations used to
obtain solutions. In this sense, the problem, a bit simplistically, can be viewed as the determination of error
bars to be assigned to the numerical solution algorithms. For a Bayesian decision framework which leads to
this point of view see [9,10]. Our approach to numerical solution errors is motivated by needs of uncertainty
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quantification. A key ingredient of the Bayesian approach is the likelihood of a mismatch between the pre-
dicted (simulated) event and the true event. The mismatch has several components: solution error, theoretical
or modeling error or approximation, experimental error, etc. Specifically the Bayesian likelihood is (up to nor-
malization) a probability, which specifies probability of occurrence of an error of any given size. Unlike other
authors [11,3,12,5] who usually use observational errors or expert opinion to form a probability model for the
likelihood, our approach is to use solution error models for the likelihood. In this sense, we address the solu-
tion error contribution only to the total mismatch likelihood. We believe the physics modeling error, generally
considered to be more intractable, should be treated in the same spirit, by observing the solution variation as
the physics model is refined.

It is common to think of uncertainty as originating in the underspecification of the problem, such as the
initial conditions or some physics parameter. The unknown inputs have probability distributions, and the
solution operator (regarded as deterministic, in contrast to our approach) maps input probabilities into output
probabilities. To transform these higher dimensional objects (probabilities of inputs) into outputs, also higher
dimensional, an efficient representation of the transformation is needed. For this purpose the Wiener path or
Polynomial Chaos expansion is used to approximate the input descriptions and map them to output descrip-
tions [23,14,6,19]. This approach is complimentary to that taken here. We have a stochastic solution mapping,
rather than or in addition to a stochastic input. Even if we have a stochastic input, we use a very simple
description of it, based on means and variances, without the use of higher moments, as would occur in the
case of a Wiener expansion.

Since many simulations are under resolved, as used in practice, asymptotic analysis of convergence does not
address the issue of error bars and uncertainty quantification, and for hyperbolically dominated flows, with
poor theoretical foundations, a posteriori methods are generally inapplicable. The method of a posteriori anal-
ysis aims to construct an upper bound on the solution error, either theoretically validated or based on numer-
ical experiments [1,18,21,4]. This method has been difficult to apply to non-linear hyperbolic systems, and in
any case does not answer the questions addressed here. We seek to characterize the error, not just to bound it.
For this reason, we consider errors from a statistical point of view, and examine an ensemble of coarse and fine
grid pairs, and their differences, which are assumed to represent the coarse grid solution error.

The statistical approach to error analysis is simple and robust, but its direct application fails for the prob-
lems considered here, namely chaotic CFD. By definition, chaotic flows are ones which exhibit sensitive depen-
dence on initial conditions. Generally, they also exhibit sensitive dependence on other parameters, not only the
physical parameters which define the flow, but also the numerical parameters which define the solution
algorithm.

There is no shortage of important chaotic flow problems. We mention climatology [15], turbulence [2,16],
fluid mixing [20], flow in porous media [13], and turbulent combustion [17]. Here we consider a representative
but relatively simple chaotic flow, the Richtmyer–Meshkov instability resulting from a shock passing through
a density discontinuity. We consider this problem in a perturbed circular (2D) geometry. Namely, a circular
shock wave implodes a perturbed circular interface, and the two circles may or may not be offset relative to
one another. The shock proceeds to the origin, where it is reflected, and the reflected shock reshocks the now
highly perturbed interface, giving rise to a highly chaotic flow. See Fig. 1.

The L1 convergence for this problem is displayed in Fig. 2, left frame. Here we measure errors as the
difference between the current and the finest grid solutions, and the convergence is perhaps 1/2 order in
the grid spacing, Dx, but decreasing as time progresses. If the error were measured (as we do in the rest
of the paper) by comparing consecutive grid sizes (separated by a factor of 2), the corresponding plot would
show non-convergence for late time. While these two measures of convergence order will show identical
exponents in an asymptotic regime, the current problem is not, and perhaps due to the chaotic nature of
the solution, cannot be in the asymptotic regime. The global L1 norm masks convergence difficulties that
we will explore in detail.

L1 norms of the error (not displayed) do not converge. It is well known that position errors in shock dis-
continuities give rise to constant (non-convergent) L1 error norms. The same statement applies to contact
or interface discontinuities. The new feature we address in this paper is that the interface, for this chaotic prob-
lem, is nearly a volume, rather than a surface effect (as it is in some sense fractal), and is non-convergent. See
Fig. 2, right frame, which displays the divergence of the time dependent interface length under mesh refinement.



Fig. 1. Left: Initial geometry of a circular shock imploding a perturbed circular contact discontinuity. The two circles are offset relative to
each other. Right: Chaotic flow observed after reshock by the outgoing shock reflected from the origin. Gray scale in both plots indicates
density. The grid is 1600 · 3200.
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Fig. 2. Left: L1 norms of the errors for successive grid levels (convergent). Right: Interface length for successive grid levels (divergent).
Non-offset case.
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We eliminate much of the source of this chaotic behavior by examination of single phase quantities, such as the
light or heavy fluid density.

In assessing convergence and convergence orders, we combine the effects of the mean error (M) and the
standard deviation (STD) of the error. Following conventional ideas, we assess convergence order in terms
of the quantity jMj + 2 STD. For the light and heavy phase densities, averaged over an angular arc, this quan-
tity is convergent. But the order and the rate of convergence depends on the fluid type (heavy vs. light, single
phase vs. mixed phase) and region, and may depend on the realization. Volume fractions and other statistical
measures of the mixing and of the interface require greater care in the study of their convergence. We sum-
marize in an approximate manner in Table 1 the data on convergence order presented in later sections.

The light fluid is located near the origin, where there are repeated shock, rarefaction and compression wave
reflections. Only the leading one of these has been removed from the light fluid convergence statistics, while all
of them give rise (at the present levels of grid refinement) to local singularities in the solutions and the errors. It
is apparently for this reason that the doubly shocked light fluid convergence is lower order. Even for quantities
with identical convergence orders, we observe distinct behavior, in the form of distinct coefficients multiplying



Table 1
Summary of convergence properties and orders, for the heavy and light densities qh and ql, volume fraction b, shock position s and mixing
zone edges mz

1st order or near 1st order Marginal or �1/2 order Non-convergent

qh(r, t,n) qh(r, t,n) doubly shocked and mixed phase regions qh(r, t,n) mixed phase region
qh(r, t) singly and doubly shocked regions qh(r, t) mixed phase region
ql(r, t,n) singly shocked and mixed phase regions ql(r, t,n) mixed phase and doubly shocked regions
ql(r, t) singly shocked ql(r, t) doubly shocked and mixed phase regions

b(r, t,n), b(r, t) b(r, t,n) doubly shocked region
s(t,n), s(t)
mz(t,n), mz(t) width

mz(t,n), mz(t) centerline

All quantities are averaged over an angular variable, and also over all variables not explicitly present in the table. The variable n is an
ensemble realization variable. The same quantities located in distinct columns indicate possible qualitatively different convergence
behavior for distinct realizations, or for different angular regions, or as a distinction between offset and non-offset behavior.
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a power of Dx, for distinct regions within the solution, and possible dependence on the realization within the
ensemble. The angular averages are essential within the mixing zone to be able to compare similar solution
features with possibly different locations, and these averages are convenient to use throughout the entire
analysis.

Because chaotic flows are important and because their study has a long history, the challenges to their
description have already been recognized. These challenges have also been addressed, most vigorously in
the analysis of observational or experimental data. An experimentalist will call a quantity reproducible or
observable if repeated measurements yield nearly identical values. For obvious reasons, experimentalists deal
only with reproducible quantities. If measured quantities, which appear not to reproducible, are important,
then their statistical distributions are studied, and these distributions are (hoped to be) reproducible. Thus,
for example, turbulent velocity fluctuations, which are not reproducible as point values, are still reproducible
in a statistical sense, and two point velocity correlations are a central object of study in turbulence modeling.

We follow the same approach for the analysis of errors in chaotic flows. We call a quantity observable or
reproducible if it is convergent under mesh refinement. According to this definition and the definition of a cha-
otic flow, the solution point values are not observable. Thus we see that the beginning of the research program
has to be the identification of observable quantities, with sufficient richness to provide a useful description of
the flow.

Following the lead of our motivating examples (turbulence, climatology), we observe averaged quantities
and statistically convergent probability distributions of fluctuating quantities. The averages may be spatial
and/or temporal and may require integration over an ensemble of ‘‘equivalent’’ problems. Here we specify
a probability distribution of initial interface perturbations to define the solution and the error ensemble. Obvi-
ously, too much averaging leads to degradation of the information available to describe the flow, while too
little averaging leads to statistics that are noisy and difficult to interpret.

One main conclusion of our study is that only a modest amount of averaging is sufficient to define obser-
vable quantities for the problem considered here. In most cases, averaging over a circular arc of 45� suffices.
For offset cases (the circular shock wave and the perturbed circular interface are offset relative to one another),
averaging over a circular arc of 40� suffices. Within that circular arc, there are about two distinct perturbation
modes on the random interface. The numbers 45 and 40 were obtained after numerous testing. We tested 5�,
10� and 20� arcs. Too little averaging leads to statistics that are noisy and difficult to interpret. The 45� arc
averaging gives well defined variables for comparison between grid levels. Consider the density q(x,y, t) and
the heavy and light fluid densities qh and ql. The location of the heavy and light fluids will typically shift
between grid levels, due to the chaotic nature of the mixing. Thus comparison of common fluid types, qh(x,y, t)
for example, may not be even defined, while comparison of the globally defined q will compare different fluids
(heavy vs. light), which is not a meaningful comparison. Some quantities, in particular the mixing zone volume
fraction for the two fluids, need, beyond this angular averaging, a fair amount of ensemble averaging.

The required amount of averaging is obviously highly problem dependent. It is also ‘‘convergence’’ depen-
dent in the sense that more extensive averaging will improve the convergence properties, so that with any given
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convergence goal, more extensive averaging may be required. We have generally attempted a minimal level of
averaging, leading to marginal convergence properties. To state our averaging in a more problem independent
manner, we have averaged over about two random modes, and for some cases, up to about six elements of an
ensemble for a total of 2 · 6 = 12 modes. With this level of averaging, we obtained at least marginal conver-
gence for all solution quantities we considered.

Other than focusing on the uncertainty for a given grid resolution, we also seek to answer how fine a grid
resolution is necessary to obtain a convergent solution. Here we presume, for the sake of definition, that a
solution has converged if the error is within 5% of the fine grid solution value. The grid level to achieve this
definition of convergence varies, depending on the quantity observed and the region of space-time (i.e. the
solution history) for this quantity. For shock position and mixing zone edges, the errors are small, within
0.1Dx for the inward shock and 0.5Dx for the outward shock. For the coarsest grid we consider
(100 · 200), the position is already convergent in the sense of the above definition. In Table 2, we list the grid
resolution needed for a convergent solution for density (heavy fluid and light fluid) and volume fraction.

The use of the quantity jMj + 2 STD to measure solution error is based on an assumption that there is a
unique, realization independent quantity determined by a sequence of mesh refined simulations. In this case
the role of the ensemble is merely to provide alternate possible instances of the error. For some variables
we find divergence in this metric (the volume fraction b(r, t,n), as a function of radius, time and ensemble real-
ization, in the doubly shocked region). For the non-convergent quantities, this assumption fails. For b, the
ensemble averaged quantity converges, and we regard this as the limit.

We draw some general conclusions from the extensive details presented below.

� Convergence is not asymptotic in Dx, nor even monotone, and is not identical under minor modifications of
measurement.
� The variability shows up in the standard deviation (STD), and the STD must be included when assessing

reliability of a calculation.
� Errors are generally below Dx or 2Dx in position, and below 10% in density or volume fraction.
� Convergence is slow, often 1/2 order or less, and depends on the flow history.

We continue our earlier use of wave filters to automate the location of distinct solution structures. These
filters locate the shock waves and the mixing zone edges; the shock waves thus located are the lead ingoing
shock and its reflection from the origin, the outgoing reflected shock. Based on the wave filters, we can analyze
position errors in these structures. The shock position errors give rise to solution state variable errors which
are L1 but not L1 convergent. The wave filters divide space and time into homogeneous regions, each possess-
ing a more or less common history, such as the singly shocked or doubly shocked fluid, or the single or mixed
phase fluid. Within a single homogeneous region, we find homogeneous error statistics. Most of the error sta-
tistics are spatially homogeneous (translation invariant) within the accuracy that we observe them. But for
regions enclosing the origin, we find that the light fluid density statistics has a spatially non-uniform behavior
at the origin at the time of shock arrival at the origin. This divergence can be fit to a power law �cr�0.25. The
power law behavior mimics the behavior of the solution itself, as was observed in our earlier 1D error studies
[8]; see also [22].
Table 2
Summary of grid resolution needed for a convergent solution, for the heavy and light densities qh and ql, and the volume fraction b

qh Singly shocked region 100 · 200
Doubly shocked region 100 · 200
Mixing zone region 200 · 400

ql Singly shocked region 100 · 200
Doubly shocked region 200 · 400
Mixing zone region 400 · 800

b Singly shocked region 400 · 800
Doubly shocked region 800 · 1600

All quantities are averaged over an angular variable.
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In Section 2 we introduce the wave filters and in Section 3, we formulate precisely the problem under study.
In Section 4 we analyze the position errors for the shock waves and mixing zone edges that the wave filters
describe. In Section 5, we analyze the solution errors within each of the regions of space time defined by
the wave filters. In Section 6, we study the volume fraction and its error analysis.

2. Wave filters

A wave filter is an automated pattern recognition algorithm which locates shock wave, rarefaction wave
and contact discontinuities in numerical solutions of the Euler equations for compressible fluids. In one
dimension the method [7] examines states along a sequence of adjacent points, fits the jump at the end points
of the sequence to a Riemann solver, and if a single wave type is detected in the Riemann solution, tries to fit
the solution through all the mesh points between the two mesh points to an error function erfc or piecewise
linear wave form (depending on the wave type). In [8], this algorithm was extended to two dimensional flows.
Starting from an arbitrary point and in an arbitrary direction, a 1D wave filter looks for a significant indica-
tion of a single wave type. The central location and direction in which this single wave type occurs most clearly
is the predictor for the wave front position and normal. The predictor for the tangent to the wave front is the
normal to the predictor normal, passing through the predictor position. Finding points at unit mesh spacing
along this predictor for the tangent, we repeat the 1D construction to find the best fitting position for the wave
front. From this construction, we have three points on the wave front, one to the left, one to the right and one
at the original location where the wave was detected. We fit a circle to these three points, giving a corrected
wave front position and normal. For the present problem, with its approximate circular symmetry, and our
average of state variables over a 45� angular sector, we average the shock position data in these sectors also
to yield sector-averaged shock positions.

This algorithm is here applied in 2D for the first time, and we find some modifications are needed for effi-
ciency. First, as we are only interested in the detection of shock waves, all the 1D passes only look for shock
waves. Secondly, we can prune the initial search locations and directions, omitting points and directions in
which an initial analysis based on solution gradients indicates no activity. The wave front data analysis is per-
formed at a fixed time interval equal to six time steps on the coarse grid, and occupies less than 10% of the
total solution time.

A new wave type, the edge (inner or outer) of the mixing zone is also needed, and for this purpose a new
wave filter is constructed. We follow previously accepted ideas in the analysis of Rayleigh–Taylor mixing data,
and look for the 5% and 95% volume fraction contours. For the present problem, with approximate circular
symmetry, we look for the 5% and 95% volume fraction contours within a 45� sector. The location of these 5%
and 95% contours can be a noisy diagnostic for the edge of the mixing zone, which occasionally moves
abruptly as a function of time. While we have not solved this problem, we have avoided it for the data pre-
sented in this paper.

In Fig. 3, we plot the space time contours in r, t space for the inward and reflected shocks and for the inner
and outer edges of the mixing zone. We have adjusted the tolerances in the automated filter so that it picks up
exclusively the strong waves we are trying to locate (and thus misses numerous weak waves). The thresholds
are set in the variable (P2 � P1) · (pressure ratio + Atwood number). Here P1, P2 are the pressures behind and
ahead of the shock.

The shock wave filter does not depend on angular averaging. The angular dependence of the shock wave for
a sequence of times is shown in Fig. 4. This figure illustrates the robustness of the wave filter tool in its 2D
application. The ripples in the wave front in the left frame near the center (vertically) of the figure are at
the time of passage of the shock front through the perturbed interface, and reflect defraction events at the
shock front to advance or retard local portions of the shock front. Similar ripples occur in the outgoing shock
angular dependence during its transit through the mixing zone. See Fig. 4, right frame, near the bottom.

3. Problem formulation

We consider a computational domain x, y 2 [0, 25] · [�25,25] (units of cm). Time units are in microsec-
onds, and pressure is in Megabars. With r denoting the radial coordinate in the x, y plane, the initial contact
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is perturbed from a circle at r = 12.5. Outside this contact is a stiffened gamma law gas, representing tin, with
parameters given approximately by c = 3.72, p1 = 0.15, to define the stiffened gamma law pressure
p + cp1 = (c � 1)qe. Inside the contact is also a stiffened gamma law gas, representing lucite, with approxi-
mate parameters c = 1.85, p1 = 0.03. A constant pressure boundary is located at r = 24. The initial ambient
pressure is p = 10�6, and the imposed pressure at the boundary is p = 0.687, giving rise to an inward propa-
gating Mach M = 2 shock at t = 0. The densities are approximately qtin = 7.3 and qlucite = 1.2 at t = 0, giving
an Atwood number A = (q2 � q1)/(q2 + q1) = 0.72. We consider a series of grids, with sizes 100 · 200,
200 · 400, 400 · 800, 800 · 1600, and 1600 · 3200. For brevity, each grid will be referred to through its smaller
dimension, i.e., the grid size 100 stands for a 100 · 200 grid. Errors will be assessed in comparison of adjacent
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grid sizes, so that the error in the 100 grid is the difference between the 100 and the 200 mesh grids. The runs
continue until after the passage of the reflected shock through the contact interface (reshock), and terminate
before the rarefaction wave which results from the reflected shock interaction with the constant pressure
boundary contaminates (very much of) the rest of the flow. For the present problem dimensions, this time
is t = 80. With this convention, we observe errors at four levels of mesh refinement in this study. The finest
level, which is needed to determine convergence in some of the variables, is carried out for a single realization,
while the other grid levels are computed with an ensemble of N = 5. For each pair of adjacent grid levels, we
assess the errors in various solution variables in terms of the mean and standard deviation, using jMj + 2 STD
as a measure of convergence. Comparing errors at two successive grid levels, we define a convergence order as
the ln2 of the ratio of the errors. If the convergence order, averaged over grid levels, is positive, we report con-
vergence. To add to the reliability of this designation, we repeat the same analysis a number of times (multiple
realizations or equivalent but different regions of space) and report recurring values, but not outliers.

The contact interface has been perturbed by sine waves to have the initial configuration
rðhÞ ¼ r0 1þ
X

n

an sinðnhÞ
 !

; ð1Þ
h 2 [�p/2,p/2]. Here r0 = 12.5 and sine modes are selected so that the imposed reflection symmetry at h = ±p/2
leads to a smooth curve. The sum over n ranges from nmin = 8 to nmax = 16, so that the average number of
observed modes in the initial perturbation is about 12. The coefficients an are chosen as Gaussian random
variables, with mean zero and STD 0.2, based on the C random number generator erand48(), mapped into a
Gaussian distribution. The observed mean peak to peak amplitude, determined by this STD, is 0.25. Successive
calls to the random number generator generate the ensemble of initial conditions used in this study.

For the non-offset simulations, the circles defining the pressure boundary conditions (and the initial shock)
and the contact are both centered at the origin. For the offset simulations, the circle defining the (pre-per-
turbed) contact has a center at x = 0, y = 5.

4. Wave position errors

Our major conclusions for the analysis of wave position errors are:

1. The incoming shock wave position errors converge to zero linearly in Dx.
2. The outgoing shock position errors also converge to zero linearly in Dx, but very fine meshes are needed to

observe this convergence.
3. The errors depend on the realization, i.e., even for first order errors, the coefficient of Dx in the error shows

run to run variation.
4. The mixing zone edge position is meaningful only in regard to some spatial or ensemble variation. We

choose here an angular arc of 45� to define the mixing zone edge.
5. The centerline of the mixing zone is less convergent than the width, and for the doubly shocked region

appears to be convergent only after consideration of a highly refined mesh.

4.1. Shock wave position errors

The shock wave position errors display distinct behavior in distinct time regions. After the shock interacts
with the perturbed contact, the position errors show a linear in t behavior, i.e., a (negative) constant shock
velocity error after the time t = t0 of shock arrival at the contact. We observe a convergence linear in the grid
spacing Dx. See Fig. 5 and the related Table 3. The columns labeled M, STD and O indicate mean, standard
deviation and convergence order, in this and later tables. This implies that the true velocity error, errortrue =
�trueDxcoarse, the difference between the exact solution and the present grid solution is double the apparent
error, errorapparent = �apparentDx, namely the difference in shock positions between an adjacent pair of fine
and coarse grid levels. In fact, for first order errors,



0.0 0.2 0.4 0.6 0.8

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

100 v.s. 200
200 v.s. 400
400 v.s. 800

|position error|

ti
m

e

0.1 0.3

STD

0.0 0.2 0.4 0.6 0.8 1.0 1.2

STD

Fig. 5. Time dependent shock wave position error in units of Dx. The errors are averaged over an angular arc of size 45� near the
symmetry axis and over an ensemble of N = 5 realizations. Both the primary (inward) and reflected (outward) shocks are shown. Observe
the noise at the time of shock reflection from the origin. Non-offset case. Left: Mean errors. Center: STD of the (h) angular variance within
a single realization. Right: The STD associated with the combined ensemble and angular average of the errors (equatorial region).

Table 3
Convergence statistics for the shock position errors, averaged over time values and over an ensemble of size N = 5 (*N = 1), in units of Dx

Grid Inward shock Outward shock

M STD Order M STD Order

100 0.05 0.01 – 0.24 0.14 –
200 0.05 0.02 0.6 0.44 0.20 0.3
400 0.04 0.01 1.6 0.29 0.11 1.7
800* 0.04 0.01 1.0 0.24 0.13 0.6

Shock position defined relative to an angular window of size 45� at the equator, non-offset case.
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�true ¼ 1þ 1
2
þ � � �

� �
�apparent ¼ 2�apparent; ð2Þ
after summation over all grid levels.
We fit our error data with
�true ¼ 2�apparent ¼ 0:016; ð3Þ

see Fig. 5.

To describe both angular and ensemble averages and the associated solution variability, we introduce some
notation. Let
EIðeÞ ¼ jIj�1

Z
I

eðh; tÞdh ð4Þ
be the angular average of a function E over an angular domain I of length jIj, and let
EEðeÞ ¼
Z
E

eðh; t; nÞdn ð5Þ
be an average over an ensemble E with total mass jEj ¼ 1. Then with an obvious extension of this notation,
we can compose the average process to evaluate the average over both angle and ensemble, so that
EIðEEðeÞÞ ¼ EðI�EÞðeÞ ð6Þ
The related identity for variances is slightly more complicated. Let
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VarIðeÞ ¼ jIj�1

Z
I

ðe� EIðeÞÞ2 dh ð7Þ
be the variance relative to the angular average, and similarly we define the variance VarI�EðeÞ relative to the
combined angular and ensemble average. Then
VarI�EðeÞ ¼ EEVarIðeÞ þ VarEEIðeÞ: ð8Þ

Although the LHS of (8) is independent of the order of integration, the RHS is not, so we also have the dis-
tinct equation
VarI�EðeÞ ¼ EIVarEðeÞ þ VarIEEðeÞ: ð9Þ

Finally, we regard the standard deviation (STD =

ffiffiffiffiffiffiffiffi
Var
p

) as a measure of the typical fluctuations in e.
We will apply these formulas to the solution error e, in a series of grid to grid comparisons as part of a

convergence study. The square root of the first term in (8) is a type of average (RMS) over the ensemble of
the STD (same units as e) associated with the angular integration, and the second term displays the ensemble
variability (STD) of the mean (angularly averaged) error. Similar formulas apply when the function e depends
on r and when spatial and/or temporal averages are included.

We present two STDs associated with the shock position error in Fig. 5. The center frame measures the
spatial fluctuations within the averaging window of 45� degrees within a single realization, i.e., the square root
of the first term on the right of (8), and the right frame combines these with fluctuations of across an ensemble
(of size 5) defined by varying the initial conditions. Both have size below Dx, but at late time, the larger values
in the right frame indicate that the dominant variability occurs across the ensemble, and not with respect to
the angle h, except at times of times of shock passage through the interface (t � 20 and t � 40). At these times
the angular dependence is dominant due to shock-interface diffraction events at a small scale (within the h
averaging window).

We find no angular dependence of the errors of the shock wave speeds on the circular angle, see Figs. 4 and
5.

4.2. Mixing zone edge errors

The mixing zone edges (and the errors in the edges) are defined as the approximate maximum and minimum
radii in the mixing zone, within an angular sector. Errors in the edges of the mixing zone are shown in Fig. 6.
This figure shows the error when the edge is defined relative to a 45� angular arc and averaged over an ensem-
ble of size N = 5. The complex structure of the error curves in time results from timings of waves which inter-
act with the mixing zone. The interface is shocked at t � 20 and reshocked at t � 40. The statistics of
convergence averaged over time and over an ensemble of size N = 5 are given in Table 4. Fig. 6 and Table
4 show convergence for the mixing zone width (first order for the singly shocked portion of the mixing zone)
and ambiguous or non-convergence for the centerline of the mixing zone, especially for its doubly shocked
time

m
z

ce
nt

er
po

si
tio

n
er

ro
r

0 20 40 60 80
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

100 vs. 200
200 vs. 400
400 vs. 800

time

m
z

w
id

th
er

ro
r

0 20 40 60 80
-0.5

0

0.5

1

1.5

2

2.5

3
100 vs. 200
200 vs. 400
400 vs. 800

Mesh convergence of the edges of the mixing zone, in units of length (cm). Non-offset case. Mixing zone defined relative to 45�
at the equator, and averaged over an ensemble of size N = 5. Left: Mixing zone center line. Right: Mixing zone width.



Table 4
Convergence statistics for the errors in the mixing zone edges, averaged over time values and over an ensemble of size N = 5 (*N = 1), in
units of cm

Grid Dx Centerline error Width error

Singly shocked Doubly shocked Singly shocked Doubly shocked

M STD Order M STD Order M STD Order M STD Order

100 1/4 �0.02 0.07 – �0.05 0.11 – 0.26 0.43 – 1.92 0.94 –
200 1/8 �0.01 0.06 0.2 �0.23 0.16 �1.0 0.08 0.17 1.5 0.45 0.72 1.0
400 1/16 �0.01 0.02 1.1 �0.10 0.19 0.2 0.07 0.09 0.8 0.35 0.35 0.9
800* 1/32 �0.01 0.01 0.9 �0.07 0.04 1.8 0.01 0.03 2.0 0.34 0.26 0.3

Edge position defined relative to an angular window h 2 [�45�, 0�]. Non-offset case.
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portion. Table 4 results from data collected on the angular region h 2 [�45�, 0�]. Analogous data from the
region h 2 [0�, 45�] shows marginal convergence (order 0.03, averaging two levels of error), most of the neg-
ative contribution coming from the coarser level error comparison. We believe this supports the idea that unu-
sual ‘‘luck’’ produced atypically good coarse grid results, so that the asymptotic progression of errors as
presented is perhaps misleading for the mixing zone centerline. In fact, the errors are clearly non-monotone
as a function of the mesh spacing.

5. Homogeneous region error analysis

Because of the lack of interface convergence, the point values of fluid type (heavy vs. light) are not conver-
gent in the mixing zone, and are observable only after an average, which we take to be over an angular arc of
45�. Our main conclusions regarding the spatial convergence are:

1. After average over an angular arc, the spatial variables are generally convergent, and except within shock
waves and at times of wave reflection at the origin, they converge pointwise in r, t.

2. The order of convergence and its rate (that is, the coefficient of Dx for first order convergence) depend on
the region (i.e., the fluid history), the degree of averaging of the observable and perhaps on the specific
choice of realization from the ensemble.

3. The spatial and temporal variability in the error in general dominates the mean error. For r, t averaged
errors, the ensemble does not contribute greatly to the variance of the error, but when evaluating r, t point
values of the error, the ensemble variability is significant.

4. The light fluid errors (jMj + 2 STD) are generally larger in absolute units (g/cc) than the heavy fluid errors.

The regularity of the error in density outside of the shock wave regions can be observed in Fig. 7. We
redraw this figure in Figs. 8 and 9 as a 3D plot (mean error along arc vs. radius and time). The prominent
high ridges in the error are due to shock position errors, so that in these ridges, the error results from com-
parison of shocked with unshocked densities. Note the singularity of the light fluid error at the origin, near the
time of arrival of the shock wave at the origin, as seen along the r = 0 axis in Fig. 9.

To compare the mean errors at different grid levels, we take a slice through the data of Figs. 8 and 9 at fixed
time and present the errors as a function of radius only, see Fig. 10. The prominent shock induced errors now
show up in the right frame as L1 but not L1 convergent features. Outside the shock regions, the solution dis-
plays a clearly convergent, often first order behavior.

Tables 5–7 summarize statistical convergence properties of the absolute density error (units of g/cc) aver-
aged over a 45� arc and over homogeneous regions of r, t space for a single realization and for ensemble aver-
ages. The STD is computed in terms of the single phase densities averaged over an arc of 45�. Regions directly
influenced by the shock position error are excluded from this analysis. Within a single homogeneous region
(e.g. singly shocked) and single fluid type (heavy or light), data for all relevant r, t are combined for the pur-
pose of computing the mean and the STD.

The STDs are generally larger than the mean, indicating that the density error is largely random and not
systematic. The error is different in the three distinct homogeneous regions, and generally smaller in the singly
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shocked single phase region than it is in the other regions. For the heavy fluid, the error is smaller in the dou-
bly shocked region than it is in the mixed fluid region. The convergence of jMj + 2 STD varies by region, fluid
type and degree of averaging, ranging from first order to marginal. The light fluid errors are significantly larger
than the heavy fluid ones and are especially prominent near the shock arrival time at the origin, t � 40, r = 0.
As with the errors associated with the shock wave location, this divergence in the error and errors at other
wave reflection times at the origin are to a large extent arrival time errors.

In a three-fold decomposition of the iterated variance (cf. (8)), corresponding to the r, t, and ensemble inte-
grations in that order, cf. Tables 8 and 9, left, about 90% of the variance is in the first two terms, i.e. representing
fluctuations over the r and t integrations and less than 10% is associated with the third term of fluctuations of
the h, r, t means over the ensemble. However, when the ensemble variance is evaluated first, as one would in
consideration of the r, t point values of the error, it can be larger. See Tables 9 and 8, right. These facts are
interpreted as follows. For r, t point values (right side of tables), the ensemble variation is significant. But if
the r, t variability has already been accounted for, then the ensemble adds little (left side of tables).
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6. Volume fraction error analysis

Our main results regarding the volume fraction error analysis are:

1. The single realization volume fraction are noisy and possibly non-convergent.
2. The ensemble averaged volume fractions are noisy but less so, and are convergent.
3. The singly shocked volume fraction is noticeably better that the doubly shocked behavior.
4. Analytic solutions of mixed phase solutions of averaged equations suggest a volume fraction monotone as a

function of the radius. The current level of ensemble averaging is very far from this picture.
Fig. 9. Mean error in the light fluid, averaged over a 45�circular arc located at the equator. Along ther = 0 axis, the prominent errors are
associated with the primary shock reflection (t� 40) and two secondary reflections (t� 45 andt� 50. Compare withFig. 3. Non-offsetcase, with error at the 100 grid level.



Table 5
Heavy fluid convergence properties averaged over the sector [0�, 45�] for a single realization (N = 1)

Grid Single phase Mixing zone

Singly shocked Doubly shocked

M STD Order M STD Order M STD Order

100 0.006 0.04 – �0.00 0.11 – 0.29 0.29 –
200 0.001 0.03 0.5 �0.03 0.10 �0.1 0.10 0.18 0.9
400 0.000 0.02 0.6 0.03 0.04 1.1 0.10 0.21 �0.2

Mean (M), STD and convergence order (order) of the absolute error (g/cc), for various grid levels in various regions. Non-offset case.

Table 6
As with Table 5, but with averages over an ensemble of size N = 5

Grid Single phase Mixing zone

Singly shocked Doubly shocked

M STD Order M STD Order M STD Order

100 0.002 0.05 – 0.02 0.16 – 0.36 0.27 –
200 0.001 0.03 0.7 �0.03 0.10 0.6 0.12 0.17 1.0
400 0.000 0.01 1.6 0.01 0.05 1.1 0.04 0.25 �0.2

Table 7
Light fluid convergence properties of the absolute error (in units of g/cc) for various grid levels in various regions averaged over the sector
[0�,45�], over r, t in a homogeneous region, and over an ensemble of size N = 5

Grid Single phase Mixing zone

Singly shocked Doubly shocked

M STD Order M STD Order M STD Order

100 �0.02 0.05 – �0.02 0.38 – �0.21 0.20 –
200 �0.03 0.04 0.3 �0.04 0.28 0.4 �0.06 0.17 0.6
400 �0.01 0.02 1.2 �0.01 0.29 0.0 �0.02 0.10 0.8

Non-offset case.

Table 8
Percent contributions of three terms to the total variance for the heavy fluid convergence, non-offset case, equatorial region, ensemble size
N = 5

Grid 100 200 400 Grid 100 200 400

Singly shocked

Varr 83 88 91 VarE 12 13 04
Vart 16 11 09 Varr 75 78 87
VarE 01 01 00 Vart 14 09 09

Doubly shocked

Varr 61 56 84 VarE 36 75 39
Vart 28 28 14 Varr 41 21 50
VarE 11 16 02 Vart 23 04 11

Mixed region

Varr 34 80 94 VarE 46 68 76
Vart 48 17 05 Varr 08 26 22
VarE 18 03 02 Vart 46 06 02

The value for each term depends on its order of evaluation; here we evaluate the variances starting from the top in two possible orders.
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In Figs. 11–13, left, we show the volume fraction as a function of scaled radius at three time values, as mesh
spacing is varied. The scaling of the radius ensures that the horizontal axis varies from 0 to 1 as one passes
through the mixing zone. The purpose of this presentation of the data is to remove from the present plots
the variability associated with the edges of the mixing zone, already analyzed in Section 4.2. In the right
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Table 9
Percent contributions of three terms to the total variance for the light fluid convergence, non-offset case, equatorial region, ensemble size
N = 5

Grid 100 200 400 Grid 100 200 400

Singly shocked

Varr 31 45 70 VarE 54 70 71
Vart 41 20 22 Varr 14 21 19
VarE 28 35 08 Vart 32 09 10

Doubly shocked

Varr 68 69 85 VarE 31 48 60
Vart 24 24 07 Varr 45 36 35
VarE 08 07 08 Vart 24 16 05

Mixed region

Varr 44 54 81 VarE 46 72 59
Vart 54 28 18 Varr 19 11 27
VarE 11 18 01 Vart 35 17 14

The value for each term depends on its order of evaluation; here we evaluate the variances starting from the top in two possible orders.
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frames, we show the time plots of the resulting solution errors for the volume fraction, all averaged over an
ensemble of N = 5 realizations, and also plotted vs. a scaled radius. The convergence statistics computed by
comparison of the bs at the same value of scaled radius (not of radius itself), and summarized in Table 10,
shows near first order convergence for the volume fraction in the singly shocked region and marginal or half
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Table 10
Volume fraction (of heavy fluid) convergence properties. Absolute error for an ensemble of size N = 5

Grid M STD Order VarE Varr Vart

Singly shocked

100 0.03 0.10 – 48 48 8
200 0.03 0.06 0.6 66 33 1
400 0.02 0.04 0.6 45 49 6

Doubly shocked

100 �0.05 0.10 – 49 49 2
200 0.00 0.06 1.1 83 16 1
400 0.02 0.07 �0.6 70 29 1

The last three columns are percent contributions to the total variance computed in the order E, r, t, i.e. left to right. Non-offset case, data
from equatorial region.
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order convergence in the doubly shocked region. The right columns of this table illustrate the importance of
the ensemble average, as the quantity VarE is a significant or dominant part of the total variance of the r, t

point values of the volume fraction. For example, averaging over grid levels, the ensemble average accounts
for about 70% of the volume fraction variability.
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